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Weak Disorder Expansion of Lyapunov 
Exponents of Products of Random Matrices: 
A Degenerate Theory 

P. Marko~ 1,2 
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The weak disorder expansion of Lyapunov exponents of products of random 
matrices is derived by a new method. Our treatment can be easily generalized 
to the problem when in the limit of zero randomness two eigenvalues of the 
matrices are equal. For real degenerate matrices, the formula for the leading 
term of the Lyapunov exponent is derived. It has the form of a continuous 
fraction, which converges quickly to the exact value. 

KEY WORDS:  Product of random matrices; Lyapunov exponents; degenerate 
perturbation. 

1. INTRODUCTION 

The problem of calculating the Lyapunov exponents (LE) of products of 
random matrices arises in the theory of disordered systems/1"2) probability 
theory, (3-6) and dynamical systems. (7-9~ While the methods for a numerical 
calculation of the LE have been described in detail, e.g., in studies of 
localization in disordered electronic systems, (1~ an analytical treatment 
is successful only in a few special cases. ~13) It is therefore useful to study the 
weak disorder expansion (WDE) of the LE. (14~ Given a product of random 
M x M matrices, 

x(N) = T ( N ) T ( N -  l ) . . .  T(2)T(1) ,  x ( O ) =  1 (1) 
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it is possible, following ref. 14, to construct the WDE of all LE. In (1), the 
matrices T ~t~ have the form 

T (~) = A +/~B (t) (2) 

where A is supposed to be diagonal with eigenvalues 21, 22 ..... ~'M, and the 
statistically independent random matrices B (~) represent the randomness. 
We suppose that the probability distributions of the matrix elements B!( ) q 

do not depend on l and that for all l :~ k 

(B ~l~) =0, (B(tlB ~k~) =0  (3) 

The parameter # measures the strength of the randomness. 
The construction of the WDE may, however, meet serious difficulties. 

Namely, it works only under the condition that all eigenvalues of the 
matrix A differ in the absolute values: 

12/1 > 12jl, i<j  (4) 

If the matrix A has a degenerate spectrum, ?.e., 

2,= 2j, iv~ j (5) 

then an another treatment is necessary. This problem has been solved for 
real matrices in ref. 15. 

In this paper, we propose a new method of construction of the WDE 
of LE for the nondegenerate case. We develop the new formalism, which 
enables us to treat the sum of the p largest LE of product (1) as the first 
(largest) LE of the infinite product of other random matrices T Ep31t~. Our 
formulas lead to the well-known results as presented in ref. 14 (Section 2). 
They also show the origin of "anomalies" of the WDE which appears under 
the condition (5). 

The most important part of this paper is Section 3. Here, we derive the 
degenerate perturbation theory for real 2 x 2 matrices T. Our results hold, 
after appropriate redefinition of the matrices T, also for the M x M  
matrices with two degenerate eigenvalues. We obtain the leading term of 
the larger LE 71 exactly as a continuous fraction, which for all examples we 
have studied converges very well. As follows from our considerations, this 
treatment is also applicable for complex matrices of the form 

a b ) (6) 
T =  b* a* 



Lyapunov Exponents of Products of Random Matrices 901 

We study in this section also the WDE of LE of real matrices, the eigen- 
values of which satisfy the relation 

/=i -- 2ir - -  = e ~0 real (7) 
~'i+ I 

and show that the "anomaly" in WDE appears only if cp = rcr/s with r, s 
integers. In Section 4 we compare our treatment with another method 
published previously. (15'2~ 

2. T H E  N O N D E G E N E R A T E  T H E O R Y  

2.1. The Star t ing Formulas 

If the matrix A has a nondegenerate spectrum, i.e., if (4) holds, then 
the largest LE 7a can be defined in the standard way~ 

7~= lim l l o g ~ =  ~ log ~H 
N - - ~  N "~11 l=1 ~[~/1-1) (8 )  

where, owing to (1), 

X (~ = T(I)X (l- ~) (9) 

A similar formula for the sum 

Fp = Yl + 72 + "'" + ~'p (10) 

of the p largest LE can be derived as follows: Let us introduce the ordered 
sets of p integers 

m==(il,i2,...,ip), 1 ~<i1<i2< --. <ip<~M (11) 

There are M e =  (~)  such different sets. Having two different sets co~ = 
(il, i2 ..... ip) and co#= ( J l , J 2  ..... jp), we define , < f l  if the condition ik<~jk 
holds for all k = 1, 2 ..... p. Evidently, o)1 = (1, 2,..., p), co 2 = (1, 2,..., p -  1, 
p + l ) ,  and coMp=(M+l-p,...,M). 

Let us now define the new MpxMp matrices T tpJ(o (XEP](~ the 
elements of which, T~p  (t) (X~'](o), are equal to subdeterminants of the 
matrix T (t) (X(t)), constructed from its p rows, labeled according to array 
co=, and p columns, labeled according to array w#. As is shown in 
Appendix A, these new matrices satisfy the same recursive relation as the 
original ones: 

XEP](t+ 1)= TtPJ(I+I)XEP](~ l =  1, 2 .... (12) 
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Fp is therefore nothing else but the largest LE of the product of random 
matrices I-I~ v T CpJ(r As, owing to (4), the largest eigenvalue 

) t [p ]  =2122" " �9 ~-p (13) 

of A Ep~ is nondegenerate, we can define Fp in the same way as y~, but with 
matrices X replaced by XcPl: 

ffp = limo ~ l l o g  Xf(?(N) Nlimoo 1 ~. Xf(?(') = log Xf(3(,_,) (14) 

Note that this definition coincides with Eq. (9) of ref. 14. 

2.2. The Weak Disorder Expansion 

Using the recurrence relation (12), one can rewrite (14) as 

1 TI [ ( ] ( / )  T[p](l).~,[p](,_l)" ~ F p = l i m  ~ log + E ~,= -= j (15) 
l=1  ~ 1  

In (15) we have introduced new variables z~ p~(t), 

y e s ] ( / )  
g [ p ] ( l  ) ~- ~ gtl 
_= X[(~, ) (16) 

which satisfy the recursive relation 

Tip](/) _L "~"~Mp TEP]( l )v  [ p ] ( / -  1) 
=1 - x - 4 ~ 1  ~=8 ~8 (17) 

--186' ~8  

To construct the WDE of Fp, we extract all terms of order 1 in (15). We 
define therefore the new matrix t~l( t )~  # as 

T [p]( / )  - -  ~[P]I~[P],~ t[P](/h 

and rewrite (15) as 

2[p~ (18) 

1 u { Mp t[pl(I).cp](I-~)'~ r;=log).['~+,r ~,=~lim E log 1 + gvltt)'a-',, - =~,E-1= -= J 

The quantities z~ pitt) then satisfy the recursive relation 

(19) 

[p]  [ p ] ( / -  t) tEpl(t) tEp](/)r t) 
x= z= +-=1 "=~ =8 (20) 

t [P] ( I )  . . l . .  t[p](1)~[p](I-- 1 ) 
1 + ' 1 1  - -  ~ . 8 ~  1 *1.~ =8 
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Using (19) and (20), we can obtain the WDE of Fp as follows: 

Fp ~ l o g  2~ p] + ( t[p]11 ) - - 1 " / t  [P]2 > k ~ l l  "~ 1-- / t [P'13 ) 3 N = l l  - -  4\l--/t[P]4\ll / 

Mp 
"It" Z '\'l=[/t[P]>-- \/t[P]t[P]))Z! ' p ] ' 1 1  "I= 

~I 
Mp 

_ �89 ~ /t[P3tEp3\,Ep3,Cp3 (21) k lzt 113 / ~=t ~fl dl- " '" 
=,BvS l 

where we have supposed that the quantities 

1 

(22) 
1 

.r [P ] , r  [P ]  lim ~ rEp](t),[p]u) 
N ~  l=1 

exist. To obtain them, we expand the right-hand side of (20) into a power 
series in #, 

Z[~ p](I) "~ "=1tiP](/) - -  ~=lt[P](1)t~P](l)'11 + " " " 

Mp 

Mp 
+ Z Z~ p](I-I)Z[~p](I-I){-(t[~(I)~-NT~p'i~'/~) /'I"[P](I)-I" ...} 

+ . . .  ( 2 3 )  

where dots stand for higher-order terms. After averaging (23) over all t's, 
using the definition of matrices T, and over z's using (22), we obtain the 
linear relations for the quantities 

z [P? ,  z [P ' I~  [P3 

In Appendix B we present their WDE up to the second order in p. 
Using formulas (B1)--(B9), one can easily recover the WDE presented 
previously.(~4'~5) 

3. D E G E N E R A T E  P E R T U R B A T I O N  T H E O R Y  

3.1. Genera l  Cons idera t ions  

Suppose now that an M • M matrix A has a degenerate spectrum, i.e., 
that 2p = 2 e +~. Following the considerations from the previous section, we 
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can construct matrices T Ep2, X Ep2; the first two eigenvalues of the matrix 
A Epl are now degenerated: 

2~P1=2,22.-.2p=22EP2=2~.--2,_12p+l>2~ p2, f l>2  

On the basis of considerations from the previous section and of the 
formulas from Appendix B, we easily verify that ~ ~ # z  for all fl > 2. 
Therefore, to obtain the second-order term of the WDE of Fp,  it is enough 
to consider only the 2 x 2 matrices 

'T'rp](l) 

-=r'E"l(')J,, 

That is why in what follows we can restrict ourselves to the problem of 
calculating the larger LE 71 of the products of 2 x 2 matrices 

/ T ( ' )  "('>~ (10 01 ) (,~'~ ,(0"~ T u) / - u  ~ 2 / =  = ~ ' v u ) T ( n /  + t I22)) (24) 

The second LE, 72, is easy to obtain, using formulas from the previous 
section (see also ref. 15), as 

72 = (log det T )  - 71 (25) 

In (24), the elements tij are given by formulas (B1)-(B3). One sees from 
(B1)-(B3) that the matrix elements t o. in (24) also contain in general terms 
~#2. To simplify the notation, we have not extracted these terms from t. 
Thus, instead of the assumption ( t i j )=0 ,  we have in general to consider 
( to . ) , .~p  2. 

We consider throughout this section all elements t o �9 real. Then we are 
concerned in what follows only with matrices for which 

(t~2) 5 0  and ( t~ l )  5 0  (26) 

because the opposite assumption implies for any l either o~2tu) - 0 or t~t~ = 0, 
respectively. For such a trivial case, however, no degenerate theory is 
necessary, because evidently 71 = -rain{ ( t ~  }, (t~2) }/2 + 0(#4). 

Before proceeding further, it is necessary to introduce some general 
remarks. Let us go back to the formulas (21)-(23). To derive them, we 
have a priori  supposed that both the logarithm in (19) and the fraction in 
(20) can be expanded in powers of # and z. Such an assumption, however, 
requires that the condition 

#2Z(l) <~ 1 for all ~, l (27) 
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holds. The validity of the inequality (27) is closely connected to the 
nondegeneracy of eigenvalues of the matrix A. It is namely equivalent to 
the assumption that the scalar product of the vector y~O, 

y" T"   28, 

\X(h[l)pl/ 

with the "original" vector (1, 0,...) is completely determined by its first 
component X~Zl ) for all l. This assumption, however, is correct only if the 
difference ~pl  _2~pJ is large enough. We estimate the last condition as 

2~p] < 1 - # 2  (29) 

If (29) holds, one can use the formulas given in the previous section and 
one obtains the second-order term of the WDE of LE as a power series in 
zJ - 1 ,  A = ()q - -  22)/2//2.  (14) 

For degenerate matrices, condition (29) is, of course, not valid. It is 
therefore not assured that condition (27) holds for each L Then, however, 
the existence of the limits (22) is no longer guaranteed. Moreover, it is not 
possible to expand expressions (19), (20). Therefore, to construct the 
WDE, we need an another starting formula. The natural generalization of 
the nondegenerate treatment is 

1 'r . y ? +  
~q= lim ~ log ,(t_l).; , ,(t_l) 

N~~176 .Yl ~'.)'2 
(30) 

with variables Yl, Y2 satisfying the recursive relations 

~,(l) _ 7.,(l) ~ , ( l -  1) .z_ 'T '(l)  ~ , ( l -  1) 
2"1 - -  ~ 1 1  . Y l  ~ - - 1 2  2 " 2  

(31) 
y( t )_  T(O , , ( l - i ) -  T(O ,,(t-1) 

2 - -  - - 2 1  Y l  ~ - - 2 2  P ' 2  

The real part of (30), 

R e ~ l =  lim 1 L 
[y~O]2 + 

u ,  ~ 2-N log 1)]= 1)]2 (32) 
,=1 [Y~'- + [Y~Z- 

determines the growth of the length of the vec tor  y(t)= t,,(t) ,,(z)~ and ~ . . r l  ~ . r 2  l 

coincides with the definition proposed, for instance, in ref. 15. The 
imaginary part, 
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1 N y(O,,(l- ~) _ ,,(t),,(t- ,) 
=~1 " 2 .,Vl P'l J 2  = arctan ~ i5 ~ ~ I m p :  l i m  ~ , =  . , 1 , 1  - ."2. ."2 

arctao -arctan  
NI=~I  Yl  Yl 

(33) 

describes the ro ta t ion  of  the s tar t ing vector  y(m in the (ya,  Y2) plane, and 
also could be of interest. 

3.2. The Construction of the Degenerate Expansion 

To const ruct  the W D E  of 71, let us rewrite (30) in the form 

y x =  lim 1 

with mat r ix  z defined as 

N 
~.(0,,(t- 1)/ (34) 

/=1 

l ( tn+t22+i ( t21- tx2  ) tn- t22+i( t12+t21)~ (35) 

"C = ~ \ t l l  - -  t22 - -  i(t12 -F t21 ) t n -F t22 - -  i(t21 - -  t12)} 

In  (34), we have in t roduced  the new variable u as 

y ~l) _ r 
u (t) = - - - -  (36) 

y~') + iyg ) 

for  which the recurrence fo rmula  

U (l) = u ( l - -  l) .~. Z(2/) "~- ~22"r(l)'z(l--~ l) 
~.(t) ~ ~.(0,,(t- x) (37) 

l "~ ~11  ~ u 1 2  ~ 

similar  to (20), holds. As 

[u(~ = 1 for all l (38) 

we see tha t  the expans ion  of  the r ight-hand side of  (34), (37) is always 
possible.  We  can therefore proceed  further in the same way as in Section 2: 
Suppos ing  tha t  variables  u , ,  

1 u 
u.  = l im ~ [u(~  ", n = 1, 2 .... (39) 

N-'+ co N I= 1 

�9 exist, we obta in  for them f rom (37) the following system of equat ions:  

u,, = u,, + #ef,, + 0 (#4)  (40) 
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where 

f.'=c~.,,,_2u._2+cg..._lu._l+cg...u.+Cg.,.+lU.+l+Cg.,.+zu.+ 2 (41) 

The coefficients cg have the following form: 

off. "-2 = lim 1 [ ( n -  1) (z~l ) ]  
' # ~ 0 ] ~  

g.~_~ = lira 1 { - 2 n [ ( ( z n - % 2 )  % 1 ) ] - 2 ( % ~ z = )  + 2(z2~)} 
' u ~ O f l  

cg.. = lim 1 { ( z ~ )  - (z22) + n[ ((1211 - -  g 2 2 )  2 )  - -  2(zxzz2~) ] 
' ,u-*  O/ , /  

+ 2 ( ' C 2 2  - -  "i'll ) } 

~f. .+,  = lim 1 {2n[( (zn  - %2) *I= ) ]  + 2('C12"Cll ) - -  2(Z12) } 

cg. .+2= lira 1 [ ( n +  1)(z~2)] (42) 
' sz--* 0/ . /  

Thus, the "absolute" terms in (40), .~/~0, cancel each other. The existence 
of limits (39) requires then that f~ = 0, i.e., 

Cg.,._2U._2+Cg~,._lU._l+Cg~.nU.+Cg~,.+lU.+i+Cgn,.+2U.+2=O (43) 

(for n = 1, 2, Eq. (43) also provides the absolute term on the rhs). 
Due to (37), we have u. ~ O(1) for all n. This result explains the origin 

of "anomalies" of the expansion of the LE: to obtain the first term of the 
expansion, one also has to find quantities ul, u 2. 

The five-diagonal system (43) has in general four "basic solutions" 
which behave as e z" for large n. In Appendix C we prove that if (26) holds, 
then Z always has a nonzero real part. Owing to (38), we are interested 
only in the exponentially decreasing solutions. However, as explained in 
Appendix C, one cannot find them without additional information. This is 
only possible if system (43) reduces to a three-diagonal one, i.e., if for all 
n either 

%,.-1 = %..+1 =0  (44) 

o r  

cg..._2 = ~.. .  +2 = 0 (45) 



908 Marko~ 

As cgn, ._  ~, (gn,,+ i contain terms ~ n  together with terms ~ n  ~ conditions 
(44) cannot be satisfied generally. Nevertheless, in Appendix D we show 
an example for which these conditions are satisfied. On the other hand, 
condition (45) is easily to satisfy. To do so, we use the fact that all the LE 
are invariant with respect to the similarity transformation 

T -~ T = U -  ~TU (46) 

as can be easily verified from (1). We can therefore first transform our 
matrix T in such a form that the conditions 

(?~z2) = (~221) = 0  (47) 

are satisfied. Then the system (43) transforms to the more suitable one 

c~..._, ft._ ~ + c~...~. + c~.,.+ 1~.+, = 0  (48) 

The fact that the system (48) has only one exponentially decreasing 
solution for n --* oo enables us to calculate from it the quantities we need. 

It is always possible to find the matrix U which secures the validity of 
conditions (47). Indeed, let us note that 

z = Q - I ( T -  1)Q (49) 

where 

Q=(1 i :) (50) 

Therefore, conditions (47) are fulfilled if the matrix U has the form 

(51) 

where x, y satisfy the biquadratic equations 

lim 1 --0 7 [<T21 ) X4 + 2(%1(%2-- %' )) x3 + ((%1 -- %2) 2 -  2z12"r21 > x z 

+ 2<z~2(~11-~=)>x+ (r~2>] = 0  

uoo~-i[lim 1 (z21)+2(z21(z22-zll))Y+((z112 

+ 2(z,2(zll  - %2)) y3 + (z122) y'-I = 0 

__ .C22)2 __ 2,r 12z21 ) y2 

(52) 

(53) 
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As is shown in Appendix C, Eqs. (52) and (53) have no solution x0 such 
that Ix0[ = 1. We can therefore use the symmetry of the coefficients in (52) 
and (53) and take y = x*. The matrix U then reads 

1 ( 2 +  ( x + x * )  i(x*--x) ) 
U = 2(1 - [xlZ):/2 i(x*--x) 2 - ( x + x * ) J  (54) 

i.e., it is real. Then ~" is real, too, and we can follow all our considerations 
from formulas (30) with the matrix T instead of T. Instead of (43), we 
obtain then the three-diagonal system (48), from which it is possible to 
obtain ~1 exactly as 

Ul = - -  (b~l"0 

q~oo~3, 3 . . . .  

where the coefficients ~.. ,  c~.,.+: are defined through elements of the 
matrix 

? = U o  lrUo (56) 

in the same way as in relations (42). 
According to Appendix C, the continuous fraction (55) is always 

convergent. The WDE of 71 then reads 

7:~(:,i)-I -2 
"~ : ( Z 1 1 )  + ( ( : 1 2 )  - -  ( : 1 1 : 1 2 ) )  al (57)  

The formulas (55) and (57) represent the main result of this section. In 
Appendix D we present applications of it. 

To end this section, let us consider the special case of (24) when 
( / 1 2 )  = ( t 2 1 )  = 0, ( t l l )  = - ( / 2 2 )  = P 2A (it  2A "~ 1 ). Then 

 2/x*-x J 
(~) =It ~,1 - x  .2 X--X*/]' Z~= 1--IXl -'-'--'-'7 (58) 

Let  us note that, in accordance with considerations in Appendix C, d does 
not influence the limiting behavior of u,. For  the small A ~ 1 an expansion 
of u, in powers of A is possible; the coefficients of the expansion could be 
calculated starting from (48). We have not, however, succeeded in con- 
structing the expansion of u, in powers of A - 1 in the opposite limit A >> 1. 
As in this limit, according to (29), also the nondegenerate theory works, 
such an expansion could be easily calculated from (21), using (B5) 
and (B7). 
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It is interesting to note that, just as the nondegenerate theory from 
Section 2 is unsuitable to treat the degenerate problem, the degenerate 
theory described in this section is also inapplicable to the construction of 
the W D E  of the LE for nondegenerate problem. This is, however, not a 
surprise, since for the last problem the variable u as defined in (30) is 
1 - O(#), and therefore the expansion of (34) with 21 --/~2 ~ i is no longer 
possible. 

3.3. The Case Ihll = Ih21, /~1 :J~ ~2 

It is easy to show that any real 2 x 2 matrix with eigenvalues which 
satisfy condition (7) can be written in the form 

T,,,= (cos go -singo] (59) 
\ sin go cos go / + \ t(2'~ t<~;,} 

.(z) with t,.j ,~ p being random and real. To calculate the LE, we use again the 
definition (30), (31), from which the W D E  can be found as 

" 1 2 e - 2igo 
71 = irp + (~'11) e - ' ~  - i (Z l l  ) 

-b ('C12 e - i ~  -- rll  z12e -21~) ux 

- -  1 2 (60) i ( ' r  12 ) e-2i~u2 

In (60), the matr ix  z is defined as in (35) and the quantities ul,  u2 are 
defined according to (39) with u (t) now satisfying the recursive relations 

U (l) = e-i~ou(t- 1) _1_ .c(91)1 .a. ~.(1)Is( l -  1) 
"~22~  (61) 

Following the same consideration as in Section 3.2, we conclude from (61) 
that the W D E  possess no anomalies unless 

go = rc - (62) 
s 

In the last case the recurrence relation (61) gives u , ~ #  n for n <s ,  but 
us ~ #s-2,  and so an anomaly appears  in the ( 2 s - 2 ) t h  order of the expan- 
sion. Therefore, to calculate the coefficients of the W D E  for n < 2s - 2, one 
can use the nondegenerate perturbat ion from Section 2. For  the higher 
coefficients, however, the degenerate perturbation is necessary. 

For  real r andom matrices T the anomaly in the second order of expan- 
sion appears only for go = re/2. To treat it, we can construct the new matrix 
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,~(t)= T(2OTt2Z-a), which has a degenerate spectrum, and use the formulas 
from Section 3.2. (The same treatment for s > 2 confirms our claim that in 
this ease no anomaly arises in the leading term of the WDE). 

4. D I S C U S S I O N  

We have presented a new method of constructing the nondegenerate 
weak disorder expansion of Lyapunov exponents of the products of 
random matrices. This method is easy to generalize to a form applicable 
also in the case when a degeneracy of two eigenvalues makes the standard 
nondegenerate treatment inapplicable. For the real degenerate matrices, the 
algorithm which gives the leading term of the expansion is described. 

In Section 3.2 we have obtained a simple formula which gives the 
second-order term of the degenerate WDE of the larger LE in the form of 
a continuous fraction. For all problems we have chosen, it converges very 
well and the obtained results are in agreement with numerical simulations. 

To calculate the leading term of the expansion of the LE, we have used 
the fact that all matrices X (n) in (1) which can be transformed into each 
other using the similarity transformation X ~ U-1XU for any U have the 
same Lyapunov exponents. It is therefore enough to treat only one matrix 
out of this "class" of X's for which the LE are easy to calculate. Let us note 
in this connection that the transformation (46) with 

/O-a/2 

is equivalent to the change of the definition (30) to 

1 " y~')+ JOy(20 
~1 =nlirn ~,~i= l~ ' -1 )+  iOy(2 l-a) (30a) 

Thus, the symmetry of the LE as reported in ref. 15 is given by the 
symmetry of the LE with respect to the transformation (46), (63) with O, 
O ~ 0 ,  ~ .  

The form of our result differs considerably from that given in ref. 15; 
unfortunately, we have not succeeded in proving their equivalence. Maybe 
this is caused by the completely different strategy of the solutions [in 
ref. 15, for instance, the resulting formula should be invariant with respect 
to any similarity transformation (46)1. From the practical point of view, 
however, it seems that the continuous fraction (55) converges better than 
the rather complicated integral in ref. 15. A comparison of both formulas 
provides the interesting possibility to find the connection between the 
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rather complicated integrals given in ref. 15 and the corresponding 
continuous fractions. 

Using the similarity transformation, we transformed our problem (I) 
to an equivalent one in which the matrices T are no longer real, but have 
the form (6). It is interesting at this point to show the connection between 
our expansion as given in Section 3 and the transfer-matrix method of 
Pendry e t  aL (2~ To do so, let us remark that, instead of T, one can 
consider other matrices "i "(~ ~(t) of higher dimensionality, which satisfy the 
same recurrence relation 

R(t+ 1)= T(l+ 1)R(o (64) 

The elements of X, ~ can be constructed as 

, =  & ({ + '>}) 
(65) 

with the functions Fg independent of l chosen in such a way that (64) 
holds. It is possible to construct many such matrices. The simplest 
examples provide the matrices T Cpl discussed in Section 2. Other examples 
have been found, using the method of tensor products and the theory of 
representation, in refs. 20 and 24. Other matrices with infinite dimen- 
sionality can be constructed, choosing, for instance, the function F11, and 
then looking for functions F U which conserve the validity of the recurrence 
relation (64). 

Let us consider now the 2 x 2 matrices T of the form (6) and choose 
the functions F n = l ,  F u = 0  for all i and F2~=T2ffTH. Then, using 
relation (64), we can step by step determine all other functions F, and thus 
construct the matrix I" which has the form 

1 0 0 

( T21 .~ - 

Tn Tn] 
( Tl2'~ 2 

~ 1 7 6  

(66) 



Lyapunov Exponents of Products of Random Matrices 913 

In (66), ~ = (Tll  T22 - T21Tlz)/T21. As R is of the same form as T, we have 
Xn~ = {X2~/X~I }n, which is nothing but our parameter u, from Section 3. 
In full analogy with considerations of Pendry et al., we conclude that 

u l =  lim {('i')N}21 (67) 
N ~  

As ul is finite, the matrix ( 'F )  has the largest eigenvalue 2max = i; it is 
therefore enough to find only the corresponding eigenvector u. Evidently 
u = (1, ul, u2,...), and the system of equations for the components of the 
vector u is identical with that in (40). 

In constructing the WDE, we restricted ourselves to the case of 
real matrices. It is clear from the construction, however, that the same 
treatment works also for complex matrices of the form (6). It could be 
interesting to generalize it also for arbitrary complex matrices, or, equiv- 
alently, to real matrices with three or more times degenerate eigenvalues. 
Unfortunately, we have not succeeded in doing this. The direct application 
of the above method leads to difficulties which seem to be insuperable 
without new ideas. 

A P P E N D I X  A 

Let us consider the 3I x M matrices A, B, C such that 

C = AB (A1) 

with the corresponding ones A [p], B fp], C [p] constructed in the way 
described in Section 2.1. Using the well-known relations for the determi- 
nant, one has 

C epl (A2) 
Q 

where r o~p=(jl , . . . , jp ). (2 is a permutation (1 ..... p ) ~  
(12(1),..., g2(p)) and P((2) is equal to the number of pair exchanges which 
determine t2. 

Using (A1), we get 

M 

CCp] =2 (-1F Z 
a k I . , . kp  

Ai~,k~ "" "AipkpBk~j~.F'" Bk, ja~p~ (A3) 

Thanks to the factor ( - 1 )  e(a), only terms with all k's different from each 
other survive in (A3). Then we can first sum over all different ordered sets 

822/70/3-4-26 
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oo a = (k~ ..... kp )  and then over all permutations H of integers in the given 
set: 

CE,3 = E E E ( -  1) P(a) Ail,kTl(1)'''aipkTI(p) 

X Bkn(.) ja,) . . -Bkmp)ja(p)  (A4) 

Substituting f2 --* fir- ~f2 [P(I2) = P(f2) - P ( T I ) ] ,  we get 

Owing to (A5), 

C [ P ]  - ~ 1 )P(I1) :,p - - /_ ,  ~ ( - -  A il,kn(l) . . . A ipkn(p) 

x ~, ( - 1)~'(a) Bk,j,~(,)... B,~j,~(,) 
.Q 

= ~ a Ep]nEpl (A5) 
a 

C [p] = A [pIBI:P] (A6) 

which proves (12). 
There are two well-known special cases of the formula (A6): for 

p = M ,  A [p3 = det A, and (A6) gives the formula for determinants. The case 
p = M - 1  corresponds, after a simple transformation, to the relation for 
inverse matrices. For details see ref. 16. 

APPEN DIX B 

Using the definitions of '[r] Z~ p], one can easily construct their WDE 
(up to the second order in g): 

Bkk'q-#2 2 BkkBtI--BkzBIk (B1) 

t [ f ] ' ~ # k ~  p~ 2k 2 k,~<p 2k2) 

Let o9= differ from 1 only by replacing i , - - , r ,  1<<.i<~p, r > p .  Then 
~ = = Z i < p E , > p ,  and we have 

tiP] ~ ~i j<~p (B2) 

t ~ P ] ~ g  # k"~= 2k 2 E 7 -27-k2~ ] (B3) 
k.l~ct  

BjjBir  
.n'tr1'rPlo1~ ~ #z ~ 2,2j (B4) 

j<~ p 
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Supposing that  z ~ / ~ 2 ,  for all fl, the leading term of z~ p''--7 reads 

/ t E p ] \ _ e ' , [ p 3 t [ p ~ )  --,U 2 S" ( B ~ B k i )  X~ctl / \ ~ 1  ~11 (B5) 

Defining an ano ther  set co~= (1, 2,..., j -  1 , j +  1,..., p, s), we have 

t[PJt[P] 1~2 BirBjs  
l e  " l f l  ~ 2i;. j (B6) 

/ t iP]t iP] ( BriBsj ) 
"= *,a ~ l _ / t [p] , [p]  \ 2i~tj__ ).rJ.s \ aa "tiff I 

Finally, for o)= = (1, 2,..., i -  1, i +  1 ..... j -  1 , j +  1, r, s), ~ = �88 Y~jzp ~ > p  
we obtain 

Bi,.B h - BisBj,. t[P] ,~/.Z 2 - ( B 8 )  
L;,j 

z~p~ ~ la 2 ( B ,~B~j -  B,~B~j) (B9) 

On the basis of the presented formulas, the WDE of l"p up to the fourth 
order could be easily constructed. We do not present here its expression, 
since it has been presented elsewhere. ('4'~5) 

APPENDIX C 

Let us suppose that  (52) has the solution 

x = #% r real (C1) 

After some simple mathematical  operations, we can transform (49) to the 
form 

lim 1 t,(l~a-t~]))cos it(l) t(2"13)]2)}=0 (C2) u_ o ~'5 { (['(t~]) -- t(2~) sin q~ -- p12 - ~o-- ,o,z -- 

As ~o is real, (C2) could be satisfied only if for any l 

(t~) --'22,'(O~ sin " w -  t.12 r .211  t ' (~  -~ '(~ cos (p - (t ~) -- t~t,)) ----- 0 (C3) 

Relation (C3) represents a very strong correlation among the elements of 
the matrix T (O. If it holds, then, using the matrix 

(cos(cp/2) - sin(~p/2)~ I 
U = k.sin(qg/2) cos(q~/2) I (C4) 
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in transformation (46), we obtain another random matrix T, which has 
?'(o ~ 0 for all l. As mentioned in Section 3.1, such matrices are not of interest 12 
here. 

Supposing that (C3) does not hold, we conclude that (52), (53) has no 
solution of the form (C1). 

The fact that the absolute values of all four solutions of (52) differ 
from 1 has an important consequence. As the coefficients of the polynomial 
in (52) are equal to 

1 
lim - (g,i (C5) 

n ~  oo F/ 

with cg given in (42), we have at the same time proved that the five-diagonal 
system (43) only has solutions which grow or decrease exponentially with n. 
We conclude therefore that the general solution of (43) can be written in 
the form 

u . = A ~ e - Z ' n + A 2  e-z2", n--+ oo (C6) 

with 

Re )(1 > Re Z2 > 0 (C7) 

It seems at first sight that to obtain u l, u2 it is possible to bound an 
infinite system (43) by choosing no large enough, supposing un = 0  for 
n > no and solving the resulting system of linear equations. Unfortunately, 
the resulting finite system is numerically unstable. Indeed, in the numerical 
solution we iterate the recursive relation (43) in the opposite direction 
(from no to 0). We obtain therefore only the first term in (C6), in which the 
constant A 1 is very sensitive to the fluctuations on the rhs of (43). 

We can repeat all the above considerations for the system (48): 
Supposing that in the limit n --, o% ~n behaves as exp(igpn), we obtain 

lim 1 { ([(t ' l l  - 722) sin 0 - (712 + 721) cos ~3 - ( t12- 721)]2> } = 0 (C8) 
g - , 0  k/ 

To derive (C8), we have used the relations 

< ( t ' l l  - -  1"22) 2 ) = <(t'12 "1- t21) 2 ) 
(C9) 

<(~11 - 722)(~12 + ~2,) ) = 0 

which are consequences of (47). 
Relation (C8) assures that 0 is complex, i.e., Ifi,I ~ 0  for large n. 
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Owing to the symmetry of the matrix -~ and of the coefficients ~, the second 
limiting solution increases exponentially. 

The existence of only one exponentially decreasing limiting solution of 
(48) guarantees the convergence of the continuous fraction (55). 

APPENDIX D 

1. Consider the degenerate 2 x 2 matrix 

( 1 .,__(0 
A --- _ u 2 z  I , 82  

' )  (D1) 

with e~ and e2 random, ( a ~ ) =  ( e ~ ) =  1. In this special case it is not 
necessary to transform the original matrix T. Indeed, the matrix z now has 
the form 

i ( - 2 # 2 A + l , ( e 2 - e l )  I.t(g2+a,) "~ 
~=2\ -1~(~2+<) 2~23 -t4~2-e~)} (D2) 

and so we have ~n,,_, =ff~, ,+,  =0;  Eqs. (40) therefore given directly 

(2n - 1 ) u2, _ 2 + (12n - 8iA ) u2,, + (2n + 1 ) u2~ + 2 = 0 

The WDE of the LE reads 

(D3) 

7, =/z2[ - i A  + �88 + u2)] (D4) 

Taking . (0) Au(,,) + ", un = u~ + -- one obtains from (D2) the systems of linear 
equations for the quantities u(f. To obtain the real part of the LE, we need 
only u(2~ 

u~ ~ = - 1  
9 

12 
25 ( D 5 )  

2 4 - ~  
36 . . . .  

which provides 

Re ~'~ 
pZ ~0.228473 +O(A 2) (D6) 

To find the imaginary part of the LE, one first has to calculate from (D2) 
all the quantities -(0) and use them in the rhs of a linear system for the U n 
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variables u~ ~. We have done this numerically using only ten equations 
(D3), and obtain 

Im V~ 
1.015080A + O(A 3) (D7) /z 2 

The results (D6), (D7), from which one can calculate (~9'2a) the radius of 
localization and the density of states of electrons with energy E=/~2A 
in the one-dimensional Anderson model, argee with results obtained 
previously.(15' 17-22) 

2. Consider the 2 x 2 matrices 

Now Eqs. (52), (53) are equal. We have therefore x = y  and the matrix U 
has the simple form 

' = \ ~ - x J  (D9) 

where O solves the biquadratic equation 

0 4 - -  (a 2 + b 2) 0 2 + 1 = 0 (D10) 

For  a = b = 1 we obtain O = 1; in this special case no transformation of the 
original matrix is necessary, and from (57) we have directly 71 = 0 ,  as 
shown in ref. 15. One easily finds also that in (42) only ~g,.~ differs from 
zero. Therefore un = 0 for all n. 

3. We have tested our method numerically for matrices 

B=(a~l\ e3 be~ +e2e4 I- c~4) ( D l l )  

with the e's random and independent with box distribution P(e)= 1 for 
- 1/2 < e < 1/2, P(e) = 0 otherwise, and for different values of constants a, 
b, c. For  all systems we have studied, formula (55) converges quickly, and 
the results, independent of the choice of the root of Eq. (52), are in agree- 
ment with numerical simulations of products of 5 million matrices (1). As 
an example, we present in Table I results for some different choices of a, b, 
and c. 
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Table I 
, J 

a b c Re 71/(# 2 <,s 2 > ) 

919 

5.0 0.0 0.0 --0.439 
0.5 0.0 0.0 +0.112 
5.0 1.0 0.0 --0.453 
5.0 1.0 1.0 -- 0.403 
1.0 3.0 3.0 +0.853 
5.0 1.0 7.0 +0.380 
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